Metamath Proof Explorer


Theorem suprlubii

Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Oct-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypothesis sup3i.1 AAxyAyx
Assertion suprlubii BB<supA<zAB<z

Proof

Step Hyp Ref Expression
1 sup3i.1 AAxyAyx
2 suprlub AAxyAyxBB<supA<zAB<z
3 1 2 mpan BB<supA<zAB<z