Metamath Proof Explorer


Theorem syl21anc

Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses syl12anc.1 φ ψ
syl12anc.2 φ χ
syl12anc.3 φ θ
syl21anc.4 ψ χ θ τ
Assertion syl21anc φ τ

Proof

Step Hyp Ref Expression
1 syl12anc.1 φ ψ
2 syl12anc.2 φ χ
3 syl12anc.3 φ θ
4 syl21anc.4 ψ χ θ τ
5 1 2 jca φ ψ χ
6 5 3 4 syl2anc φ τ