Metamath Proof Explorer


Theorem syl2anc

Description: Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012)

Ref Expression
Hypotheses syl2anc.1 φ ψ
syl2anc.2 φ χ
syl2anc.3 ψ χ θ
Assertion syl2anc φ θ

Proof

Step Hyp Ref Expression
1 syl2anc.1 φ ψ
2 syl2anc.2 φ χ
3 syl2anc.3 ψ χ θ
4 3 ex ψ χ θ
5 1 2 4 sylc φ θ