Metamath Proof Explorer
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
|
|
Ref |
Expression |
|
Hypotheses |
syl2and.1 |
|
|
|
syl2and.2 |
|
|
|
syl2and.3 |
|
|
Assertion |
syl2and |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl2and.1 |
|
| 2 |
|
syl2and.2 |
|
| 3 |
|
syl2and.3 |
|
| 4 |
2 3
|
sylan2d |
|
| 5 |
1 4
|
syland |
|