Metamath Proof Explorer


Theorem syl2and

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syl2and.1 φψχ
syl2and.2 φθτ
syl2and.3 φχτη
Assertion syl2and φψθη

Proof

Step Hyp Ref Expression
1 syl2and.1 φψχ
2 syl2and.2 φθτ
3 syl2and.3 φχτη
4 2 3 sylan2d φχθη
5 1 4 syland φψθη