Metamath Proof Explorer


Theorem syl3an132

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)

Ref Expression
Hypotheses syl3an132.1 φ ψ
syl3an132.2 χ θ τ
syl3an132.3 ψ τ η
Assertion syl3an132 φ χ θ η

Proof

Step Hyp Ref Expression
1 syl3an132.1 φ ψ
2 syl3an132.2 χ θ τ
3 syl3an132.3 ψ τ η
4 1 2 3 syl2an φ χ θ η
5 4 3impb φ χ θ η