Metamath Proof Explorer


Theorem sylanblrc

Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)

Ref Expression
Hypotheses sylanblrc.1 φψ
sylanblrc.2 χ
sylanblrc.3 θψχ
Assertion sylanblrc φθ

Proof

Step Hyp Ref Expression
1 sylanblrc.1 φψ
2 sylanblrc.2 χ
3 sylanblrc.3 θψχ
4 2 a1i φχ
5 1 4 3 sylanbrc φθ