Metamath Proof Explorer


Theorem sylanbr

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanbr.1 ψφ
sylanbr.2 ψχθ
Assertion sylanbr φχθ

Proof

Step Hyp Ref Expression
1 sylanbr.1 ψφ
2 sylanbr.2 ψχθ
3 1 biimpri φψ
4 3 2 sylan φχθ