Metamath Proof Explorer


Theorem syldan

Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)

Ref Expression
Hypotheses syldan.1 φ ψ χ
syldan.2 φ χ θ
Assertion syldan φ ψ θ

Proof

Step Hyp Ref Expression
1 syldan.1 φ ψ χ
2 syldan.2 φ χ θ
3 simpl φ ψ φ
4 3 1 2 syl2anc φ ψ θ