Metamath Proof Explorer
Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)
|
|
Ref |
Expression |
|
Hypotheses |
syldan.1 |
|
|
|
syldan.2 |
|
|
Assertion |
syldan |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syldan.1 |
|
2 |
|
syldan.2 |
|
3 |
|
simpl |
|
4 |
3 1 2
|
syl2anc |
|