Metamath Proof Explorer


Theorem sylow2b

Description: Sylow's second theorem. Any P -group H is a subgroup of a conjugated P -group K of order P ^ n || ( #X ) with n maximal. This is usually stated under the assumption that K is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2b.x X = Base G
sylow2b.xf φ X Fin
sylow2b.h φ H SubGrp G
sylow2b.k φ K SubGrp G
sylow2b.a + ˙ = + G
sylow2b.hp φ P pGrp G 𝑠 H
sylow2b.kn φ K = P P pCnt X
sylow2b.d - ˙ = - G
Assertion sylow2b φ g X H ran x K g + ˙ x - ˙ g

Proof

Step Hyp Ref Expression
1 sylow2b.x X = Base G
2 sylow2b.xf φ X Fin
3 sylow2b.h φ H SubGrp G
4 sylow2b.k φ K SubGrp G
5 sylow2b.a + ˙ = + G
6 sylow2b.hp φ P pGrp G 𝑠 H
7 sylow2b.kn φ K = P P pCnt X
8 sylow2b.d - ˙ = - G
9 eqid G ~ QG K = G ~ QG K
10 oveq2 s = z u + ˙ s = u + ˙ z
11 10 cbvmptv s v u + ˙ s = z v u + ˙ z
12 oveq1 u = x u + ˙ z = x + ˙ z
13 12 mpteq2dv u = x z v u + ˙ z = z v x + ˙ z
14 11 13 syl5eq u = x s v u + ˙ s = z v x + ˙ z
15 14 rneqd u = x ran s v u + ˙ s = ran z v x + ˙ z
16 mpteq1 v = y z v x + ˙ z = z y x + ˙ z
17 16 rneqd v = y ran z v x + ˙ z = ran z y x + ˙ z
18 15 17 cbvmpov u H , v X / G ~ QG K ran s v u + ˙ s = x H , y X / G ~ QG K ran z y x + ˙ z
19 1 2 3 4 5 9 18 6 7 8 sylow2blem3 φ g X H ran x K g + ˙ x - ˙ g