Metamath Proof Explorer


Theorem symgextres

Description: The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextres KNZSENK=Z

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 1 2 symgextfv KNZSiNKEi=Zi
4 3 ralrimiv KNZSiNKEi=Zi
5 1 2 symgextf KNZSE:NN
6 5 ffnd KNZSEFnN
7 eqid SymGrpNK=SymGrpNK
8 7 1 symgbasf ZSZ:NKNK
9 8 ffnd ZSZFnNK
10 9 adantl KNZSZFnNK
11 difssd KNZSNKN
12 fvreseq1 EFnNZFnNKNKNENK=ZiNKEi=Zi
13 6 10 11 12 syl21anc KNZSENK=ZiNKEi=Zi
14 4 13 mpbird KNZSENK=Z