| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgext.s |  |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 2 |  | symgext.e |  |-  E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) | 
						
							| 3 | 1 2 | symgextfv |  |-  ( ( K e. N /\ Z e. S ) -> ( i e. ( N \ { K } ) -> ( E ` i ) = ( Z ` i ) ) ) | 
						
							| 4 | 3 | ralrimiv |  |-  ( ( K e. N /\ Z e. S ) -> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) | 
						
							| 5 | 1 2 | symgextf |  |-  ( ( K e. N /\ Z e. S ) -> E : N --> N ) | 
						
							| 6 | 5 | ffnd |  |-  ( ( K e. N /\ Z e. S ) -> E Fn N ) | 
						
							| 7 |  | eqid |  |-  ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 8 | 7 1 | symgbasf |  |-  ( Z e. S -> Z : ( N \ { K } ) --> ( N \ { K } ) ) | 
						
							| 9 | 8 | ffnd |  |-  ( Z e. S -> Z Fn ( N \ { K } ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( K e. N /\ Z e. S ) -> Z Fn ( N \ { K } ) ) | 
						
							| 11 |  | difssd |  |-  ( ( K e. N /\ Z e. S ) -> ( N \ { K } ) C_ N ) | 
						
							| 12 |  | fvreseq1 |  |-  ( ( ( E Fn N /\ Z Fn ( N \ { K } ) ) /\ ( N \ { K } ) C_ N ) -> ( ( E |` ( N \ { K } ) ) = Z <-> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) ) | 
						
							| 13 | 6 10 11 12 | syl21anc |  |-  ( ( K e. N /\ Z e. S ) -> ( ( E |` ( N \ { K } ) ) = Z <-> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) ) | 
						
							| 14 | 4 13 | mpbird |  |-  ( ( K e. N /\ Z e. S ) -> ( E |` ( N \ { K } ) ) = Z ) |