| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgext.s |  |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 2 |  | symgext.e |  |-  E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) | 
						
							| 3 |  | eldifi |  |-  ( X e. ( N \ { K } ) -> X e. N ) | 
						
							| 4 |  | fvexd |  |-  ( ( K e. N /\ Z e. S ) -> ( Z ` X ) e. _V ) | 
						
							| 5 |  | ifexg |  |-  ( ( K e. N /\ ( Z ` X ) e. _V ) -> if ( X = K , K , ( Z ` X ) ) e. _V ) | 
						
							| 6 | 4 5 | syldan |  |-  ( ( K e. N /\ Z e. S ) -> if ( X = K , K , ( Z ` X ) ) e. _V ) | 
						
							| 7 |  | eqeq1 |  |-  ( x = X -> ( x = K <-> X = K ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = X -> ( Z ` x ) = ( Z ` X ) ) | 
						
							| 9 | 7 8 | ifbieq2d |  |-  ( x = X -> if ( x = K , K , ( Z ` x ) ) = if ( X = K , K , ( Z ` X ) ) ) | 
						
							| 10 | 9 2 | fvmptg |  |-  ( ( X e. N /\ if ( X = K , K , ( Z ` X ) ) e. _V ) -> ( E ` X ) = if ( X = K , K , ( Z ` X ) ) ) | 
						
							| 11 | 3 6 10 | syl2anr |  |-  ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( E ` X ) = if ( X = K , K , ( Z ` X ) ) ) | 
						
							| 12 |  | eldifsnneq |  |-  ( X e. ( N \ { K } ) -> -. X = K ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> -. X = K ) | 
						
							| 14 | 13 | iffalsed |  |-  ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> if ( X = K , K , ( Z ` X ) ) = ( Z ` X ) ) | 
						
							| 15 | 11 14 | eqtrd |  |-  ( ( ( K e. N /\ Z e. S ) /\ X e. ( N \ { K } ) ) -> ( E ` X ) = ( Z ` X ) ) | 
						
							| 16 | 15 | ex |  |-  ( ( K e. N /\ Z e. S ) -> ( X e. ( N \ { K } ) -> ( E ` X ) = ( Z ` X ) ) ) |