Metamath Proof Explorer


Theorem t0dist

Description: Any two distinct points in a T_0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 X=J
Assertion t0dist JKol2AXBXABoJ¬AoBo

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 1 t0sep JKol2AXBXoJAoBoA=B
3 2 necon3ad JKol2AXBXAB¬oJAoBo
4 3 exp32 JKol2AXBXAB¬oJAoBo
5 4 3imp2 JKol2AXBXAB¬oJAoBo
6 rexnal oJ¬AoBo¬oJAoBo
7 5 6 sylibr JKol2AXBXABoJ¬AoBo