Metamath Proof Explorer


Theorem tbwlem4

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem4 φψψφ

Proof

Step Hyp Ref Expression
1 tbw-ax4
2 tbw-ax1 ψψ
3 tbwlem1 ψψψψ
4 2 3 ax-mp ψψ
5 1 4 ax-mp ψψ
6 tbwlem1 ψψψψ
7 5 6 ax-mp ψψ
8 tbw-ax1 φψψψφψ
9 tbwlem1 φψψψφψψψφψφψ
10 8 9 ax-mp ψψφψφψ
11 7 10 ax-mp φψφψ
12 tbwlem2 φψφφφψφ
13 tbwlem3 φφφψφψφ
14 12 13 tbwsyl φψψφ
15 11 14 tbwsyl φψψφ