Metamath Proof Explorer


Theorem tcel

Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis tc2.1 AV
Assertion tcel BATCBTCA

Proof

Step Hyp Ref Expression
1 tc2.1 AV
2 tcvalg BATCB=x|BxTrx
3 ssel AxBABx
4 trss TrxBxBx
5 4 com12 BxTrxBx
6 3 5 syl6com BAAxTrxBx
7 6 impd BAAxTrxBx
8 simpr AxTrxTrx
9 7 8 jca2 BAAxTrxBxTrx
10 9 ss2abdv BAx|AxTrxx|BxTrx
11 intss x|AxTrxx|BxTrxx|BxTrxx|AxTrx
12 10 11 syl BAx|BxTrxx|AxTrx
13 tcvalg AVTCA=x|AxTrx
14 1 13 ax-mp TCA=x|AxTrx
15 12 14 sseqtrrdi BAx|BxTrxTCA
16 2 15 eqsstrd BATCBTCA