Metamath Proof Explorer


Theorem tcphex

Description: Lemma for tcphbas and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypothesis tcphex.v V=BaseW
Assertion tcphex xVx,˙xV

Proof

Step Hyp Ref Expression
1 tcphex.v V=BaseW
2 eqid xVx,˙x=xVx,˙x
3 fvrn0 x,˙xran
4 3 a1i xVx,˙xran
5 2 4 fmpti xVx,˙x:Vran
6 1 fvexi VV
7 cnex V
8 sqrtf :
9 frn :ran
10 8 9 ax-mp ran
11 7 10 ssexi ranV
12 p0ex V
13 11 12 unex ranV
14 fex2 xVx,˙x:VranVVranVxVx,˙xV
15 5 6 13 14 mp3an xVx,˙xV