Metamath Proof Explorer


Theorem tfrlem6

Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem6 RelrecsF

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 reluni RelAgARelg
3 1 tfrlem4 gAFung
4 funrel FungRelg
5 3 4 syl gARelg
6 2 5 mprgbir RelA
7 1 recsfval recsF=A
8 7 releqi RelrecsFRelA
9 6 8 mpbir RelrecsF