Metamath Proof Explorer


Theorem tgbtwnconnln3

Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p P = Base G
tgbtwnconn.i I = Itv G
tgbtwnconn.g φ G 𝒢 Tarski
tgbtwnconn.a φ A P
tgbtwnconn.b φ B P
tgbtwnconn.c φ C P
tgbtwnconn.d φ D P
tgbtwnconn3.1 φ B A I D
tgbtwnconn3.2 φ C A I D
tgbtwnconnln3.l L = Line 𝒢 G
Assertion tgbtwnconnln3 φ B A L C A = C

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P = Base G
2 tgbtwnconn.i I = Itv G
3 tgbtwnconn.g φ G 𝒢 Tarski
4 tgbtwnconn.a φ A P
5 tgbtwnconn.b φ B P
6 tgbtwnconn.c φ C P
7 tgbtwnconn.d φ D P
8 tgbtwnconn3.1 φ B A I D
9 tgbtwnconn3.2 φ C A I D
10 tgbtwnconnln3.l L = Line 𝒢 G
11 3 adantr φ B A I C G 𝒢 Tarski
12 4 adantr φ B A I C A P
13 6 adantr φ B A I C C P
14 5 adantr φ B A I C B P
15 simpr φ B A I C B A I C
16 1 10 2 11 12 13 14 15 btwncolg1 φ B A I C B A L C A = C
17 3 adantr φ C A I B G 𝒢 Tarski
18 4 adantr φ C A I B A P
19 6 adantr φ C A I B C P
20 5 adantr φ C A I B B P
21 simpr φ C A I B C A I B
22 1 10 2 17 18 19 20 21 btwncolg3 φ C A I B B A L C A = C
23 1 2 3 4 5 6 7 8 9 tgbtwnconn3 φ B A I C C A I B
24 16 22 23 mpjaodan φ B A L C A = C