Metamath Proof Explorer


Theorem tgldimor

Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019)

Ref Expression
Hypotheses tgldimor.p P=EF
tgldimor.a φAP
Assertion tgldimor φP=12P

Proof

Step Hyp Ref Expression
1 tgldimor.p P=EF
2 tgldimor.a φAP
3 1 fvexi PV
4 hashv01gt1 PVP=0P=11<P
5 3 4 ax-mp P=0P=11<P
6 3orass P=0P=11<PP=0P=11<P
7 5 6 mpbi P=0P=11<P
8 1p1e2 1+1=2
9 1z 1
10 nn0z P0P
11 zltp1le 1P1<P1+1P
12 9 10 11 sylancr P01<P1+1P
13 12 biimpac 1<PP01+1P
14 8 13 eqbrtrrid 1<PP02P
15 2re 2
16 15 rexri 2*
17 pnfge 2*2+∞
18 16 17 ax-mp 2+∞
19 breq2 P=+∞2P2+∞
20 18 19 mpbiri P=+∞2P
21 20 adantl 1<PP=+∞2P
22 hashnn0pnf PVP0P=+∞
23 3 22 mp1i 1<PP0P=+∞
24 14 21 23 mpjaodan 1<P2P
25 24 orim2i P=11<PP=12P
26 25 orim2i P=0P=11<PP=0P=12P
27 7 26 mp1i φP=0P=12P
28 ne0i APP
29 hasheq0 PVP=0P=
30 3 29 ax-mp P=0P=
31 30 biimpi P=0P=
32 31 necon3ai P¬P=0
33 2 28 32 3syl φ¬P=0
34 biorf ¬P=0P=12PP=0P=12P
35 33 34 syl φP=12PP=0P=12P
36 27 35 mpbird φP=12P