Metamath Proof Explorer


Theorem tgrpbase

Description: The base set of the translation group is the set of all translations (for a fiducial co-atom W ). (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H=LHypK
tgrpset.t T=LTrnKW
tgrpset.g G=TGrpKW
tgrp.c C=BaseG
Assertion tgrpbase KVWHC=T

Proof

Step Hyp Ref Expression
1 tgrpset.h H=LHypK
2 tgrpset.t T=LTrnKW
3 tgrpset.g G=TGrpKW
4 tgrp.c C=BaseG
5 1 2 3 tgrpset KVWHG=BasendxT+ndxfT,gTfg
6 5 fveq2d KVWHBaseG=BaseBasendxT+ndxfT,gTfg
7 2 fvexi TV
8 eqid BasendxT+ndxfT,gTfg=BasendxT+ndxfT,gTfg
9 8 grpbase TVT=BaseBasendxT+ndxfT,gTfg
10 7 9 ax-mp T=BaseBasendxT+ndxfT,gTfg
11 6 4 10 3eqtr4g KVWHC=T