Metamath Proof Explorer


Theorem tgrpopr

Description: The group operation of the translation group is function composition. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H=LHypK
tgrpset.t T=LTrnKW
tgrpset.g G=TGrpKW
tgrp.o +˙=+G
Assertion tgrpopr KVWH+˙=fT,gTfg

Proof

Step Hyp Ref Expression
1 tgrpset.h H=LHypK
2 tgrpset.t T=LTrnKW
3 tgrpset.g G=TGrpKW
4 tgrp.o +˙=+G
5 1 2 3 tgrpset KVWHG=BasendxT+ndxfT,gTfg
6 5 fveq2d KVWH+G=+BasendxT+ndxfT,gTfg
7 2 fvexi TV
8 7 7 mpoex fT,gTfgV
9 eqid BasendxT+ndxfT,gTfg=BasendxT+ndxfT,gTfg
10 9 grpplusg fT,gTfgVfT,gTfg=+BasendxT+ndxfT,gTfg
11 8 10 ax-mp fT,gTfg=+BasendxT+ndxfT,gTfg
12 6 4 11 3eqtr4g KVWH+˙=fT,gTfg