Metamath Proof Explorer


Theorem tgsegconeq

Description: Two points that satisfy the conclusion of axtgsegcon are identical. Uniqueness portion of Theorem 2.12 of Schwabhauser p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgcgrextend.a φAP
tgcgrextend.b φBP
tgcgrextend.c φCP
tgcgrextend.d φDP
tgcgrextend.e φEP
tgcgrextend.f φFP
tgsegconeq.1 φDA
tgsegconeq.2 φADIE
tgsegconeq.3 φADIF
tgsegconeq.4 φA-˙E=B-˙C
tgsegconeq.5 φA-˙F=B-˙C
Assertion tgsegconeq φE=F

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgcgrextend.a φAP
6 tgcgrextend.b φBP
7 tgcgrextend.c φCP
8 tgcgrextend.d φDP
9 tgcgrextend.e φEP
10 tgcgrextend.f φFP
11 tgsegconeq.1 φDA
12 tgsegconeq.2 φADIE
13 tgsegconeq.3 φADIF
14 tgsegconeq.4 φA-˙E=B-˙C
15 tgsegconeq.5 φA-˙F=B-˙C
16 eqidd φD-˙A=D-˙A
17 eqidd φA-˙E=A-˙E
18 14 15 eqtr4d φA-˙E=A-˙F
19 1 2 3 4 8 5 9 8 5 10 12 13 16 18 tgcgrextend φD-˙E=D-˙F
20 1 2 3 4 8 5 9 8 5 9 9 10 11 12 12 16 17 19 18 axtg5seg φE-˙E=E-˙F
21 20 eqcomd φE-˙F=E-˙E
22 1 2 3 4 9 10 9 21 axtgcgrid φE=F