Metamath Proof Explorer


Theorem thlbas

Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Hypotheses thlval.k K=toHLW
thlbas.c C=ClSubSpW
Assertion thlbas C=BaseK

Proof

Step Hyp Ref Expression
1 thlval.k K=toHLW
2 thlbas.c C=ClSubSpW
3 2 fvexi CV
4 eqid toIncC=toIncC
5 4 ipobas CVC=BasetoIncC
6 3 5 ax-mp C=BasetoIncC
7 baseid Base=SlotBasendx
8 basendxnocndx Basendxocndx
9 7 8 setsnid BasetoIncC=BasetoIncCsSetocndxocvW
10 6 9 eqtri C=BasetoIncCsSetocndxocvW
11 eqid ocvW=ocvW
12 1 2 4 11 thlval WVK=toIncCsSetocndxocvW
13 12 fveq2d WVBaseK=BasetoIncCsSetocndxocvW
14 10 13 eqtr4id WVC=BaseK
15 base0 =Base
16 fvprc ¬WVClSubSpW=
17 2 16 eqtrid ¬WVC=
18 fvprc ¬WVtoHLW=
19 1 18 eqtrid ¬WVK=
20 19 fveq2d ¬WVBaseK=Base
21 15 17 20 3eqtr4a ¬WVC=BaseK
22 14 21 pm2.61i C=BaseK