Metamath Proof Explorer


Theorem thlbasOLD

Description: Obsolete proof of thlbas as of 11-Nov-2024. Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses thlval.k K=toHLW
thlbas.c C=ClSubSpW
Assertion thlbasOLD C=BaseK

Proof

Step Hyp Ref Expression
1 thlval.k K=toHLW
2 thlbas.c C=ClSubSpW
3 2 fvexi CV
4 eqid toIncC=toIncC
5 4 ipobas CVC=BasetoIncC
6 3 5 ax-mp C=BasetoIncC
7 baseid Base=SlotBasendx
8 1re 1
9 1nn 1
10 1nn0 10
11 1lt10 1<10
12 9 10 10 11 declti 1<11
13 8 12 ltneii 111
14 basendx Basendx=1
15 ocndx ocndx=11
16 14 15 neeq12i Basendxocndx111
17 13 16 mpbir Basendxocndx
18 7 17 setsnid BasetoIncC=BasetoIncCsSetocndxocvW
19 6 18 eqtri C=BasetoIncCsSetocndxocvW
20 eqid ocvW=ocvW
21 1 2 4 20 thlval WVK=toIncCsSetocndxocvW
22 21 fveq2d WVBaseK=BasetoIncCsSetocndxocvW
23 19 22 eqtr4id WVC=BaseK
24 base0 =Base
25 fvprc ¬WVClSubSpW=
26 2 25 eqtrid ¬WVC=
27 fvprc ¬WVtoHLW=
28 1 27 eqtrid ¬WVK=
29 28 fveq2d ¬WVBaseK=Base
30 24 26 29 3eqtr4a ¬WVC=BaseK
31 23 30 pm2.61i C=BaseK