Metamath Proof Explorer


Theorem thlval

Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K=toHLW
thlval.c C=ClSubSpW
thlval.i I=toIncC
thlval.o ˙=ocvW
Assertion thlval WVK=IsSetocndx˙

Proof

Step Hyp Ref Expression
1 thlval.k K=toHLW
2 thlval.c C=ClSubSpW
3 thlval.i I=toIncC
4 thlval.o ˙=ocvW
5 elex WVWV
6 fveq2 h=WClSubSph=ClSubSpW
7 6 2 eqtr4di h=WClSubSph=C
8 7 fveq2d h=WtoIncClSubSph=toIncC
9 8 3 eqtr4di h=WtoIncClSubSph=I
10 fveq2 h=Wocvh=ocvW
11 10 4 eqtr4di h=Wocvh=˙
12 11 opeq2d h=Wocndxocvh=ocndx˙
13 9 12 oveq12d h=WtoIncClSubSphsSetocndxocvh=IsSetocndx˙
14 df-thl toHL=hVtoIncClSubSphsSetocndxocvh
15 ovex IsSetocndx˙V
16 13 14 15 fvmpt WVtoHLW=IsSetocndx˙
17 1 16 eqtrid WVK=IsSetocndx˙
18 5 17 syl WVK=IsSetocndx˙