Metamath Proof Explorer


Theorem tlt3

Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses tlt3.b B=BaseK
tlt3.l <˙=<K
Assertion tlt3 KTosetXBYBX=YX<˙YY<˙X

Proof

Step Hyp Ref Expression
1 tlt3.b B=BaseK
2 tlt3.l <˙=<K
3 eqid K=K
4 1 3 2 tlt2 KTosetXBYBXKYY<˙X
5 tospos KTosetKPoset
6 1 3 2 pleval2 KPosetXBYBXKYX<˙YX=Y
7 orcom X<˙YX=YX=YX<˙Y
8 6 7 bitrdi KPosetXBYBXKYX=YX<˙Y
9 5 8 syl3an1 KTosetXBYBXKYX=YX<˙Y
10 9 orbi1d KTosetXBYBXKYY<˙XX=YX<˙YY<˙X
11 4 10 mpbid KTosetXBYBX=YX<˙YY<˙X
12 df-3or X=YX<˙YY<˙XX=YX<˙YY<˙X
13 11 12 sylibr KTosetXBYBX=YX<˙YY<˙X