Metamath Proof Explorer


Theorem trleile

Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018)

Ref Expression
Hypotheses trleile.b B=BaseK
trleile.l ˙=KB×B
Assertion trleile KTosetXBYBX˙YY˙X

Proof

Step Hyp Ref Expression
1 trleile.b B=BaseK
2 trleile.l ˙=KB×B
3 eqid K=K
4 1 3 tleile KTosetXBYBXKYYKX
5 3simpc KTosetXBYBXBYB
6 brxp XB×BYXBYB
7 5 6 sylibr KTosetXBYBXB×BY
8 brin XKB×BYXKYXB×BY
9 8 rbaib XB×BYXKB×BYXKY
10 7 9 syl KTosetXBYBXKB×BYXKY
11 5 ancomd KTosetXBYBYBXB
12 brxp YB×BXYBXB
13 11 12 sylibr KTosetXBYBYB×BX
14 brin YKB×BXYKXYB×BX
15 14 rbaib YB×BXYKB×BXYKX
16 13 15 syl KTosetXBYBYKB×BXYKX
17 10 16 orbi12d KTosetXBYBXKB×BYYKB×BXXKYYKX
18 4 17 mpbird KTosetXBYBXKB×BYYKB×BX
19 2 breqi X˙YXKB×BY
20 2 breqi Y˙XYKB×BX
21 19 20 orbi12i X˙YY˙XXKB×BYYKB×BX
22 18 21 sylibr KTosetXBYBX˙YY˙X