Metamath Proof Explorer


Theorem tncp

Description: In any planar incidence geometry, there exist three non-collinear points. (Contributed by FL, 3-Aug-2009)

Ref Expression
Hypothesis tncp.1 P = G
Assertion tncp G Plig a P b P c P l G ¬ a l b l c l

Proof

Step Hyp Ref Expression
1 tncp.1 P = G
2 1 isplig G Plig G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l
3 2 ibi G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l
4 3 simp3d G Plig a P b P c P l G ¬ a l b l c l