Metamath Proof Explorer


Theorem tng0

Description: The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tng0.2 0 ˙ = 0 G
Assertion tng0 N V 0 ˙ = 0 T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tng0.2 0 ˙ = 0 G
3 eqidd N V Base G = Base G
4 eqid Base G = Base G
5 1 4 tngbas N V Base G = Base T
6 eqid + G = + G
7 1 6 tngplusg N V + G = + T
8 7 oveqdr N V x Base G y Base G x + G y = x + T y
9 3 5 8 grpidpropd N V 0 G = 0 T
10 2 9 syl5eq N V 0 ˙ = 0 T