Metamath Proof Explorer


Theorem tngbas

Description: The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngbas.2 B=BaseG
Assertion tngbas NVB=BaseT

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngbas.2 B=BaseG
3 baseid Base=SlotBasendx
4 tsetndxnbasendx TopSetndxBasendx
5 4 necomi BasendxTopSetndx
6 dsndxnbasendx distndxBasendx
7 6 necomi Basendxdistndx
8 1 3 5 7 tnglem NVBaseG=BaseT
9 2 8 eqtrid NVB=BaseT