Metamath Proof Explorer


Theorem tposfo2

Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposfo2 RelAF:AontoBtposF:A-1ontoB

Proof

Step Hyp Ref Expression
1 tposfn2 RelAFFnAtposFFnA-1
2 1 adantrd RelAFFnAranF=BtposFFnA-1
3 fndm FFnAdomF=A
4 3 releqd FFnAReldomFRelA
5 4 biimparc RelAFFnAReldomF
6 rntpos ReldomFrantposF=ranF
7 5 6 syl RelAFFnArantposF=ranF
8 7 eqeq1d RelAFFnArantposF=BranF=B
9 8 biimprd RelAFFnAranF=BrantposF=B
10 9 expimpd RelAFFnAranF=BrantposF=B
11 2 10 jcad RelAFFnAranF=BtposFFnA-1rantposF=B
12 df-fo F:AontoBFFnAranF=B
13 df-fo tposF:A-1ontoBtposFFnA-1rantposF=B
14 11 12 13 3imtr4g RelAF:AontoBtposF:A-1ontoB