Metamath Proof Explorer


Theorem trcleq12lem

Description: Equality implies bijection. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion trcleq12lem R=SA=BRAAAASBBBB

Proof

Step Hyp Ref Expression
1 cleq1lem R=SRAAAASAAAA
2 trcleq2lem A=BSAAAASBBBB
3 1 2 sylan9bb R=SA=BRAAAASBBBB