Metamath Proof Explorer


Theorem trclidm

Description: The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020)

Ref Expression
Assertion trclidm RVt+t+R=t+R

Proof

Step Hyp Ref Expression
1 fvex t+RV
2 trclfvcotr RVt+Rt+Rt+R
3 cotrtrclfv t+RVt+Rt+Rt+Rt+t+R=t+R
4 1 2 3 sylancr RVt+t+R=t+R