| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unss |
|
| 2 |
|
simpl |
|
| 3 |
1 2
|
sylbir |
|
| 4 |
|
vex |
|
| 5 |
|
trcleq2lem |
|
| 6 |
4 5
|
elab |
|
| 7 |
6
|
biimpri |
|
| 8 |
3 7
|
sylan |
|
| 9 |
|
intss1 |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpr |
|
| 12 |
1 11
|
sylbir |
|
| 13 |
|
trcleq2lem |
|
| 14 |
4 13
|
elab |
|
| 15 |
14
|
biimpri |
|
| 16 |
12 15
|
sylan |
|
| 17 |
|
intss1 |
|
| 18 |
16 17
|
syl |
|
| 19 |
10 18
|
unssd |
|
| 20 |
|
simpr |
|
| 21 |
19 20
|
jca |
|
| 22 |
|
ssmin |
|
| 23 |
|
ssmin |
|
| 24 |
|
unss12 |
|
| 25 |
22 23 24
|
mp2an |
|
| 26 |
|
sstr |
|
| 27 |
25 26
|
mpan |
|
| 28 |
27
|
anim1i |
|
| 29 |
21 28
|
impbii |
|
| 30 |
29
|
abbii |
|
| 31 |
30
|
inteqi |
|
| 32 |
|
unexg |
|
| 33 |
|
trclfv |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
simpl |
|
| 36 |
|
trclfv |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
simpr |
|
| 39 |
|
trclfv |
|
| 40 |
38 39
|
syl |
|
| 41 |
37 40
|
uneq12d |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
fvex |
|
| 44 |
36 43
|
eqeltrrdi |
|
| 45 |
|
fvex |
|
| 46 |
39 45
|
eqeltrrdi |
|
| 47 |
|
unexg |
|
| 48 |
44 46 47
|
syl2an |
|
| 49 |
|
trclfv |
|
| 50 |
48 49
|
syl |
|
| 51 |
42 50
|
eqtrd |
|
| 52 |
31 34 51
|
3eqtr4a |
|