Metamath Proof Explorer


Theorem trivnsgd

Description: The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivnsgd.1 B=BaseG
trivnsgd.2 0˙=0G
trivnsgd.3 φGGrp
trivnsgd.4 φB=0˙
Assertion trivnsgd φNrmSGrpG=B

Proof

Step Hyp Ref Expression
1 trivnsgd.1 B=BaseG
2 trivnsgd.2 0˙=0G
3 trivnsgd.3 φGGrp
4 trivnsgd.4 φB=0˙
5 nsgsubg xNrmSGrpGxSubGrpG
6 5 a1i φxNrmSGrpGxSubGrpG
7 6 ssrdv φNrmSGrpGSubGrpG
8 1 2 3 4 trivsubgsnd φSubGrpG=B
9 7 8 sseqtrd φNrmSGrpGB
10 1 nsgid GGrpBNrmSGrpG
11 3 10 syl φBNrmSGrpG
12 11 snssd φBNrmSGrpG
13 9 12 eqssd φNrmSGrpG=B