Metamath Proof Explorer


Theorem trlid0b

Description: A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trlid0b.b B = Base K
trlid0b.z 0 ˙ = 0. K
trlid0b.h H = LHyp K
trlid0b.t T = LTrn K W
trlid0b.r R = trL K W
Assertion trlid0b K HL W H F T F = I B R F = 0 ˙

Proof

Step Hyp Ref Expression
1 trlid0b.b B = Base K
2 trlid0b.z 0 ˙ = 0. K
3 trlid0b.h H = LHyp K
4 trlid0b.t T = LTrn K W
5 trlid0b.r R = trL K W
6 eqid Atoms K = Atoms K
7 1 6 3 4 5 trlnidatb K HL W H F T F I B R F Atoms K
8 2 6 3 4 5 trlatn0 K HL W H F T R F Atoms K R F 0 ˙
9 7 8 bitrd K HL W H F T F I B R F 0 ˙
10 9 necon4bid K HL W H F T F = I B R F = 0 ˙