Metamath Proof Explorer


Theorem trom

Description: The class of finite ordinals _om is a transitive class. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion trom Trω

Proof

Step Hyp Ref Expression
1 dftr2 Trωyxyxxωyω
2 onelon xOnyxyOn
3 2 expcom yxxOnyOn
4 limord LimzOrdz
5 ordtr OrdzTrz
6 trel Trzyxxzyz
7 4 5 6 3syl Limzyxxzyz
8 7 expd Limzyxxzyz
9 8 com12 yxLimzxzyz
10 9 a2d yxLimzxzLimzyz
11 10 alimdv yxzLimzxzzLimzyz
12 3 11 anim12d yxxOnzLimzxzyOnzLimzyz
13 elom xωxOnzLimzxz
14 elom yωyOnzLimzyz
15 12 13 14 3imtr4g yxxωyω
16 15 imp yxxωyω
17 16 ax-gen xyxxωyω
18 1 17 mpgbir Trω