Description: The class of finite ordinals _om is a transitive class. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | trom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 | |
|
2 | onelon | |
|
3 | 2 | expcom | |
4 | limord | |
|
5 | ordtr | |
|
6 | trel | |
|
7 | 4 5 6 | 3syl | |
8 | 7 | expd | |
9 | 8 | com12 | |
10 | 9 | a2d | |
11 | 10 | alimdv | |
12 | 3 11 | anim12d | |
13 | elom | |
|
14 | elom | |
|
15 | 12 13 14 | 3imtr4g | |
16 | 15 | imp | |
17 | 16 | ax-gen | |
18 | 1 17 | mpgbir | |