Metamath Proof Explorer


Theorem trpredeq2

Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion trpredeq2 A = B TrPred R A X = TrPred R B X

Proof

Step Hyp Ref Expression
1 predeq2 A = B Pred R A y = Pred R B y
2 1 iuneq2d A = B y a Pred R A y = y a Pred R B y
3 2 mpteq2dv A = B a V y a Pred R A y = a V y a Pred R B y
4 predeq2 A = B Pred R A X = Pred R B X
5 rdgeq12 a V y a Pred R A y = a V y a Pred R B y Pred R A X = Pred R B X rec a V y a Pred R A y Pred R A X = rec a V y a Pred R B y Pred R B X
6 5 reseq1d a V y a Pred R A y = a V y a Pred R B y Pred R A X = Pred R B X rec a V y a Pred R A y Pred R A X ω = rec a V y a Pred R B y Pred R B X ω
7 3 4 6 syl2anc A = B rec a V y a Pred R A y Pred R A X ω = rec a V y a Pred R B y Pred R B X ω
8 7 rneqd A = B ran rec a V y a Pred R A y Pred R A X ω = ran rec a V y a Pred R B y Pred R B X ω
9 8 unieqd A = B ran rec a V y a Pred R A y Pred R A X ω = ran rec a V y a Pred R B y Pred R B X ω
10 df-trpred TrPred R A X = ran rec a V y a Pred R A y Pred R A X ω
11 df-trpred TrPred R B X = ran rec a V y a Pred R B y Pred R B X ω
12 9 10 11 3eqtr4g A = B TrPred R A X = TrPred R B X