Metamath Proof Explorer


Theorem truniALT

Description: The union of a class of transitive sets is transitive. Alternate proof of truni . truniALT is truniALTVD without virtual deductions and was automatically derived from truniALTVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion truniALT xATrxTrA

Proof

Step Hyp Ref Expression
1 simpr zyyAyA
2 1 a1i xATrxzyyAyA
3 eluni yAqyqqA
4 2 3 imbitrdi xATrxzyyAqyqqA
5 simpl zyyAzy
6 5 a1i xATrxzyyAzy
7 simpl yqqAyq
8 7 2a1i xATrxzyyAyqqAyq
9 simpr yqqAqA
10 9 2a1i xATrxzyyAyqqAqA
11 rspsbc qAxATrx[˙q/x]˙Trx
12 11 com12 xATrxqA[˙q/x]˙Trx
13 10 12 syl6d xATrxzyyAyqqA[˙q/x]˙Trx
14 trsbc qA[˙q/x]˙TrxTrq
15 14 biimpd qA[˙q/x]˙TrxTrq
16 10 13 15 ee33 xATrxzyyAyqqATrq
17 trel Trqzyyqzq
18 17 expdcom zyyqTrqzq
19 6 8 16 18 ee233 xATrxzyyAyqqAzq
20 elunii zqqAzA
21 20 ex zqqAzA
22 19 10 21 ee33 xATrxzyyAyqqAzA
23 22 alrimdv xATrxzyyAqyqqAzA
24 19.23v qyqqAzAqyqqAzA
25 23 24 imbitrdi xATrxzyyAqyqqAzA
26 4 25 mpdd xATrxzyyAzA
27 26 alrimivv xATrxzyzyyAzA
28 dftr2 TrAzyzyyAzA
29 27 28 sylibr xATrxTrA