Metamath Proof Explorer


Theorem tsksuc

Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsksuc TTarskiAOnATsucAT

Proof

Step Hyp Ref Expression
1 simp1 TTarskiAOnATTTarski
2 tskpw TTarskiAT𝒫AT
3 2 3adant2 TTarskiAOnAT𝒫AT
4 eloni AOnOrdA
5 4 3ad2ant2 TTarskiAOnATOrdA
6 ordunisuc OrdAsucA=A
7 eqimss sucA=AsucAA
8 5 6 7 3syl TTarskiAOnATsucAA
9 sspwuni sucA𝒫AsucAA
10 8 9 sylibr TTarskiAOnATsucA𝒫A
11 tskss TTarski𝒫ATsucA𝒫AsucAT
12 1 3 10 11 syl3anc TTarskiAOnATsucAT