Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | tsksuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | tskpw | |
|
3 | 2 | 3adant2 | |
4 | eloni | |
|
5 | 4 | 3ad2ant2 | |
6 | ordunisuc | |
|
7 | eqimss | |
|
8 | 5 6 7 | 3syl | |
9 | sspwuni | |
|
10 | 8 9 | sylibr | |
11 | tskss | |
|
12 | 1 3 10 11 | syl3anc | |