Metamath Proof Explorer


Theorem ttgplusgOLD

Description: Obsolete proof of ttgplusg as of 29-Oct-2024. The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgplusg.1 ⊒+Λ™=+H
Assertion ttgplusgOLD ⊒+Λ™=+G

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgplusg.1 ⊒+Λ™=+H
3 df-plusg ⊒+𝑔=Slot2
4 2nn ⊒2βˆˆβ„•
5 1nn ⊒1βˆˆβ„•
6 6nn0 ⊒6βˆˆβ„•0
7 2nn0 ⊒2βˆˆβ„•0
8 2lt10 ⊒2<10
9 5 6 7 8 declti ⊒2<16
10 1 3 4 9 ttglemOLD ⊒+H=+G
11 2 10 eqtri ⊒+Λ™=+G