Metamath Proof Explorer


Theorem ttukeylem4

Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φF:cardAB1-1 ontoAB
ttukeylem.2 φBA
ttukeylem.3 φxxA𝒫xFinA
ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
Assertion ttukeylem4 φG=B

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φF:cardAB1-1 ontoAB
2 ttukeylem.2 φBA
3 ttukeylem.3 φxxA𝒫xFinA
4 ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
5 0elon On
6 1 2 3 4 ttukeylem3 φOnG=if=if=BGGifGFAF
7 5 6 mpan2 φG=if=if=BGGifGFAF
8 uni0 =
9 8 eqcomi =
10 9 iftruei if=if=BGGifGFAF=if=BG
11 eqid =
12 11 iftruei if=BG=B
13 10 12 eqtri if=if=BGGifGFAF=B
14 7 13 eqtrdi φG=B