| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttukeylem.1 |
|
| 2 |
|
ttukeylem.2 |
|
| 3 |
|
ttukeylem.3 |
|
| 4 |
|
ttukeylem.4 |
|
| 5 |
4
|
tfr2 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
eqidd |
|
| 8 |
|
simpr |
|
| 9 |
8
|
dmeqd |
|
| 10 |
4
|
tfr1 |
|
| 11 |
|
onss |
|
| 12 |
11
|
ad2antlr |
|
| 13 |
|
fnssres |
|
| 14 |
10 12 13
|
sylancr |
|
| 15 |
14
|
fndmd |
|
| 16 |
9 15
|
eqtrd |
|
| 17 |
16
|
unieqd |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
16
|
eqeq1d |
|
| 20 |
8
|
rneqd |
|
| 21 |
|
df-ima |
|
| 22 |
20 21
|
eqtr4di |
|
| 23 |
22
|
unieqd |
|
| 24 |
19 23
|
ifbieq2d |
|
| 25 |
8 17
|
fveq12d |
|
| 26 |
17
|
fveq2d |
|
| 27 |
26
|
sneqd |
|
| 28 |
25 27
|
uneq12d |
|
| 29 |
28
|
eleq1d |
|
| 30 |
|
eqidd |
|
| 31 |
29 27 30
|
ifbieq12d |
|
| 32 |
25 31
|
uneq12d |
|
| 33 |
18 24 32
|
ifbieq12d |
|
| 34 |
|
onuni |
|
| 35 |
34
|
ad3antlr |
|
| 36 |
|
sucidg |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
eloni |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
|
orduniorsuc |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
orcanai |
|
| 43 |
37 42
|
eleqtrrd |
|
| 44 |
43
|
fvresd |
|
| 45 |
44
|
uneq1d |
|
| 46 |
45
|
eleq1d |
|
| 47 |
46
|
ifbid |
|
| 48 |
44 47
|
uneq12d |
|
| 49 |
48
|
ifeq2da |
|
| 50 |
33 49
|
eqtrd |
|
| 51 |
|
fnfun |
|
| 52 |
10 51
|
ax-mp |
|
| 53 |
|
simpr |
|
| 54 |
|
resfunexg |
|
| 55 |
52 53 54
|
sylancr |
|
| 56 |
2
|
elexd |
|
| 57 |
|
funimaexg |
|
| 58 |
52 57
|
mpan |
|
| 59 |
58
|
uniexd |
|
| 60 |
|
ifcl |
|
| 61 |
56 59 60
|
syl2an |
|
| 62 |
|
fvex |
|
| 63 |
|
snex |
|
| 64 |
|
0ex |
|
| 65 |
63 64
|
ifex |
|
| 66 |
62 65
|
unex |
|
| 67 |
|
ifcl |
|
| 68 |
61 66 67
|
sylancl |
|
| 69 |
7 50 55 68
|
fvmptd |
|
| 70 |
6 69
|
eqtrd |
|