Metamath Proof Explorer


Theorem ttukeylem3

Description: Lemma for ttukey . (Contributed by Mario Carneiro, 11-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φF:cardAB1-1 ontoAB
ttukeylem.2 φBA
ttukeylem.3 φxxA𝒫xFinA
ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
Assertion ttukeylem3 φCOnGC=ifC=CifC=BGCGCifGCFCAFC

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φF:cardAB1-1 ontoAB
2 ttukeylem.2 φBA
3 ttukeylem.3 φxxA𝒫xFinA
4 ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
5 4 tfr2 COnGC=zVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomzGC
6 5 adantl φCOnGC=zVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomzGC
7 eqidd φCOnzVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz=zVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
8 simpr φCOnz=GCz=GC
9 8 dmeqd φCOnz=GCdomz=domGC
10 4 tfr1 GFnOn
11 onss COnCOn
12 11 ad2antlr φCOnz=GCCOn
13 fnssres GFnOnCOnGCFnC
14 10 12 13 sylancr φCOnz=GCGCFnC
15 14 fndmd φCOnz=GCdomGC=C
16 9 15 eqtrd φCOnz=GCdomz=C
17 16 unieqd φCOnz=GCdomz=C
18 16 17 eqeq12d φCOnz=GCdomz=domzC=C
19 16 eqeq1d φCOnz=GCdomz=C=
20 8 rneqd φCOnz=GCranz=ranGC
21 df-ima GC=ranGC
22 20 21 eqtr4di φCOnz=GCranz=GC
23 22 unieqd φCOnz=GCranz=GC
24 19 23 ifbieq2d φCOnz=GCifdomz=Branz=ifC=BGC
25 8 17 fveq12d φCOnz=GCzdomz=GCC
26 17 fveq2d φCOnz=GCFdomz=FC
27 26 sneqd φCOnz=GCFdomz=FC
28 25 27 uneq12d φCOnz=GCzdomzFdomz=GCCFC
29 28 eleq1d φCOnz=GCzdomzFdomzAGCCFCA
30 eqidd φCOnz=GC=
31 29 27 30 ifbieq12d φCOnz=GCifzdomzFdomzAFdomz=ifGCCFCAFC
32 25 31 uneq12d φCOnz=GCzdomzifzdomzFdomzAFdomz=GCCifGCCFCAFC
33 18 24 32 ifbieq12d φCOnz=GCifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz=ifC=CifC=BGCGCCifGCCFCAFC
34 onuni COnCOn
35 34 ad3antlr φCOnz=GC¬C=CCOn
36 sucidg COnCsucC
37 35 36 syl φCOnz=GC¬C=CCsucC
38 eloni COnOrdC
39 38 ad2antlr φCOnz=GCOrdC
40 orduniorsuc OrdCC=CC=sucC
41 39 40 syl φCOnz=GCC=CC=sucC
42 41 orcanai φCOnz=GC¬C=CC=sucC
43 37 42 eleqtrrd φCOnz=GC¬C=CCC
44 43 fvresd φCOnz=GC¬C=CGCC=GC
45 44 uneq1d φCOnz=GC¬C=CGCCFC=GCFC
46 45 eleq1d φCOnz=GC¬C=CGCCFCAGCFCA
47 46 ifbid φCOnz=GC¬C=CifGCCFCAFC=ifGCFCAFC
48 44 47 uneq12d φCOnz=GC¬C=CGCCifGCCFCAFC=GCifGCFCAFC
49 48 ifeq2da φCOnz=GCifC=CifC=BGCGCCifGCCFCAFC=ifC=CifC=BGCGCifGCFCAFC
50 33 49 eqtrd φCOnz=GCifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz=ifC=CifC=BGCGCifGCFCAFC
51 fnfun GFnOnFunG
52 10 51 ax-mp FunG
53 simpr φCOnCOn
54 resfunexg FunGCOnGCV
55 52 53 54 sylancr φCOnGCV
56 2 elexd φBV
57 funimaexg FunGCOnGCV
58 52 57 mpan COnGCV
59 58 uniexd COnGCV
60 ifcl BVGCVifC=BGCV
61 56 59 60 syl2an φCOnifC=BGCV
62 fvex GCV
63 snex FCV
64 0ex V
65 63 64 ifex ifGCFCAFCV
66 62 65 unex GCifGCFCAFCV
67 ifcl ifC=BGCVGCifGCFCAFCVifC=CifC=BGCGCifGCFCAFCV
68 61 66 67 sylancl φCOnifC=CifC=BGCGCifGCFCAFCV
69 7 50 55 68 fvmptd φCOnzVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomzGC=ifC=CifC=BGCGCifGCFCAFC
70 6 69 eqtrd φCOnGC=ifC=CifC=BGCGCifGCFCAFC