Metamath Proof Explorer


Theorem ttukeylem3

Description: Lemma for ttukey . (Contributed by Mario Carneiro, 11-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φ F : card A B 1-1 onto A B
ttukeylem.2 φ B A
ttukeylem.3 φ x x A 𝒫 x Fin A
ttukeylem.4 G = recs z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z
Assertion ttukeylem3 φ C On G C = if C = C if C = B G C G C if G C F C A F C

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φ F : card A B 1-1 onto A B
2 ttukeylem.2 φ B A
3 ttukeylem.3 φ x x A 𝒫 x Fin A
4 ttukeylem.4 G = recs z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z
5 4 tfr2 C On G C = z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z G C
6 5 adantl φ C On G C = z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z G C
7 eqidd φ C On z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z = z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z
8 simpr φ C On z = G C z = G C
9 8 dmeqd φ C On z = G C dom z = dom G C
10 4 tfr1 G Fn On
11 onss C On C On
12 11 ad2antlr φ C On z = G C C On
13 fnssres G Fn On C On G C Fn C
14 10 12 13 sylancr φ C On z = G C G C Fn C
15 14 fndmd φ C On z = G C dom G C = C
16 9 15 eqtrd φ C On z = G C dom z = C
17 16 unieqd φ C On z = G C dom z = C
18 16 17 eqeq12d φ C On z = G C dom z = dom z C = C
19 16 eqeq1d φ C On z = G C dom z = C =
20 8 rneqd φ C On z = G C ran z = ran G C
21 df-ima G C = ran G C
22 20 21 eqtr4di φ C On z = G C ran z = G C
23 22 unieqd φ C On z = G C ran z = G C
24 19 23 ifbieq2d φ C On z = G C if dom z = B ran z = if C = B G C
25 8 17 fveq12d φ C On z = G C z dom z = G C C
26 17 fveq2d φ C On z = G C F dom z = F C
27 26 sneqd φ C On z = G C F dom z = F C
28 25 27 uneq12d φ C On z = G C z dom z F dom z = G C C F C
29 28 eleq1d φ C On z = G C z dom z F dom z A G C C F C A
30 eqidd φ C On z = G C =
31 29 27 30 ifbieq12d φ C On z = G C if z dom z F dom z A F dom z = if G C C F C A F C
32 25 31 uneq12d φ C On z = G C z dom z if z dom z F dom z A F dom z = G C C if G C C F C A F C
33 18 24 32 ifbieq12d φ C On z = G C if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z = if C = C if C = B G C G C C if G C C F C A F C
34 onuni C On C On
35 34 ad3antlr φ C On z = G C ¬ C = C C On
36 sucidg C On C suc C
37 35 36 syl φ C On z = G C ¬ C = C C suc C
38 eloni C On Ord C
39 38 ad2antlr φ C On z = G C Ord C
40 orduniorsuc Ord C C = C C = suc C
41 39 40 syl φ C On z = G C C = C C = suc C
42 41 orcanai φ C On z = G C ¬ C = C C = suc C
43 37 42 eleqtrrd φ C On z = G C ¬ C = C C C
44 43 fvresd φ C On z = G C ¬ C = C G C C = G C
45 44 uneq1d φ C On z = G C ¬ C = C G C C F C = G C F C
46 45 eleq1d φ C On z = G C ¬ C = C G C C F C A G C F C A
47 46 ifbid φ C On z = G C ¬ C = C if G C C F C A F C = if G C F C A F C
48 44 47 uneq12d φ C On z = G C ¬ C = C G C C if G C C F C A F C = G C if G C F C A F C
49 48 ifeq2da φ C On z = G C if C = C if C = B G C G C C if G C C F C A F C = if C = C if C = B G C G C if G C F C A F C
50 33 49 eqtrd φ C On z = G C if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z = if C = C if C = B G C G C if G C F C A F C
51 fnfun G Fn On Fun G
52 10 51 ax-mp Fun G
53 simpr φ C On C On
54 resfunexg Fun G C On G C V
55 52 53 54 sylancr φ C On G C V
56 2 elexd φ B V
57 funimaexg Fun G C On G C V
58 52 57 mpan C On G C V
59 58 uniexd C On G C V
60 ifcl B V G C V if C = B G C V
61 56 59 60 syl2an φ C On if C = B G C V
62 fvex G C V
63 snex F C V
64 0ex V
65 63 64 ifex if G C F C A F C V
66 62 65 unex G C if G C F C A F C V
67 ifcl if C = B G C V G C if G C F C A F C V if C = C if C = B G C G C if G C F C A F C V
68 61 66 67 sylancl φ C On if C = C if C = B G C G C if G C F C A F C V
69 7 50 55 68 fvmptd φ C On z V if dom z = dom z if dom z = B ran z z dom z if z dom z F dom z A F dom z G C = if C = C if C = B G C G C if G C F C A F C
70 6 69 eqtrd φ C On G C = if C = C if C = B G C G C if G C F C A F C