Metamath Proof Explorer


Theorem tz6.12-2

Description: Function value when F is not a function. Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by Mario Carneiro, 31-Aug-2015) Avoid ax-10 , ax-11 , ax-12 . (Revised by TM, 25-Jan-2026)

Ref Expression
Assertion tz6.12-2 ¬ ∃! x A F x F A =

Proof

Step Hyp Ref Expression
1 df-fv F A = ι y | A F y
2 eu6im z x A F x x = z ∃! x A F x
3 breq2 y = x A F y A F x
4 3 eqabcbw y | A F y = z x A F x x z
5 velsn x z x = z
6 5 bibi2i A F x x z A F x x = z
7 6 albii x A F x x z x A F x x = z
8 4 7 bitri y | A F y = z x A F x x = z
9 8 exbii z y | A F y = z z x A F x x = z
10 iotanul2 ¬ z y | A F y = z ι y | A F y =
11 9 10 sylnbir ¬ z x A F x x = z ι y | A F y =
12 2 11 nsyl5 ¬ ∃! x A F x ι y | A F y =
13 1 12 eqtrid ¬ ∃! x A F x F A =