Metamath Proof Explorer


Theorem tz7.2

Description: Similar to Theorem 7.2 of TakeutiZaring p. 35, except that the Axiom of Regularity is not required due to the antecedent _E Fr A . (Contributed by NM, 4-May-1994)

Ref Expression
Assertion tz7.2 TrAEFrABABABA

Proof

Step Hyp Ref Expression
1 trss TrABABA
2 efrirr EFrA¬AA
3 eleq1 B=ABAAA
4 3 notbid B=A¬BA¬AA
5 2 4 syl5ibrcom EFrAB=A¬BA
6 5 necon2ad EFrABABA
7 1 6 anim12ii TrAEFrABABABA
8 7 3impia TrAEFrABABABA