Metamath Proof Explorer


Theorem tz7.48-1

Description: Proposition 7.48(1) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)

Ref Expression
Hypothesis tz7.48.1 FFnOn
Assertion tz7.48-1 xOnFxAFxranFA

Proof

Step Hyp Ref Expression
1 tz7.48.1 FFnOn
2 vex yV
3 2 elrn2 yranFxxyF
4 vex xV
5 4 2 opeldm xyFxdomF
6 1 fndmi domF=On
7 5 6 eleqtrdi xyFxOn
8 7 ancri xyFxOnxyF
9 fnopfvb FFnOnxOnFx=yxyF
10 1 9 mpan xOnFx=yxyF
11 10 pm5.32i xOnFx=yxOnxyF
12 8 11 sylibr xyFxOnFx=y
13 12 eximi xxyFxxOnFx=y
14 3 13 sylbi yranFxxOnFx=y
15 nfra1 xxOnFxAFx
16 nfv xyA
17 rsp xOnFxAFxxOnFxAFx
18 eldifi FxAFxFxA
19 eleq1 Fx=yFxAyA
20 18 19 syl5ibcom FxAFxFx=yyA
21 20 imim2i xOnFxAFxxOnFx=yyA
22 21 impd xOnFxAFxxOnFx=yyA
23 17 22 syl xOnFxAFxxOnFx=yyA
24 15 16 23 exlimd xOnFxAFxxxOnFx=yyA
25 14 24 syl5 xOnFxAFxyranFyA
26 25 ssrdv xOnFxAFxranFA