Metamath Proof Explorer


Theorem tz7.49c

Description: Corollary of Proposition 7.49 of TakeutiZaring p. 51. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 19-Jan-2013)

Ref Expression
Hypothesis tz7.49c.1 FFnOn
Assertion tz7.49c ABxOnAFxFxAFxxOnFx:x1-1 ontoA

Proof

Step Hyp Ref Expression
1 tz7.49c.1 FFnOn
2 biid xOnAFxFxAFxxOnAFxFxAFx
3 1 2 tz7.49 ABxOnAFxFxAFxxOnyxAFyFx=AFunFx-1
4 3simpc yxAFyFx=AFunFx-1Fx=AFunFx-1
5 onss xOnxOn
6 fnssres FFnOnxOnFxFnx
7 1 5 6 sylancr xOnFxFnx
8 df-ima Fx=ranFx
9 8 eqeq1i Fx=AranFx=A
10 9 biimpi Fx=AranFx=A
11 7 10 anim12i xOnFx=AFxFnxranFx=A
12 11 anim1i xOnFx=AFunFx-1FxFnxranFx=AFunFx-1
13 dff1o2 Fx:x1-1 ontoAFxFnxFunFx-1ranFx=A
14 3anan32 FxFnxFunFx-1ranFx=AFxFnxranFx=AFunFx-1
15 13 14 bitri Fx:x1-1 ontoAFxFnxranFx=AFunFx-1
16 12 15 sylibr xOnFx=AFunFx-1Fx:x1-1 ontoA
17 16 expl xOnFx=AFunFx-1Fx:x1-1 ontoA
18 4 17 syl5 xOnyxAFyFx=AFunFx-1Fx:x1-1 ontoA
19 18 reximia xOnyxAFyFx=AFunFx-1xOnFx:x1-1 ontoA
20 3 19 syl ABxOnAFxFxAFxxOnFx:x1-1 ontoA