Metamath Proof Explorer


Theorem tz9.13

Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of TakeutiZaring p. 78. (Contributed by NM, 23-Sep-2003)

Ref Expression
Hypothesis tz9.13.1 AV
Assertion tz9.13 xOnAR1x

Proof

Step Hyp Ref Expression
1 tz9.13.1 AV
2 setind zzy|xOnyR1xzy|xOnyR1xy|xOnyR1x=V
3 ssel zy|xOnyR1xwzwy|xOnyR1x
4 vex wV
5 eleq1 y=wyR1xwR1x
6 5 rexbidv y=wxOnyR1xxOnwR1x
7 4 6 elab wy|xOnyR1xxOnwR1x
8 3 7 imbitrdi zy|xOnyR1xwzxOnwR1x
9 8 ralrimiv zy|xOnyR1xwzxOnwR1x
10 vex zV
11 10 tz9.12 wzxOnwR1xxOnzR1x
12 9 11 syl zy|xOnyR1xxOnzR1x
13 eleq1 y=zyR1xzR1x
14 13 rexbidv y=zxOnyR1xxOnzR1x
15 10 14 elab zy|xOnyR1xxOnzR1x
16 12 15 sylibr zy|xOnyR1xzy|xOnyR1x
17 2 16 mpg y|xOnyR1x=V
18 1 17 eleqtrri Ay|xOnyR1x
19 eleq1 y=AyR1xAR1x
20 19 rexbidv y=AxOnyR1xxOnAR1x
21 1 20 elab Ay|xOnyR1xxOnAR1x
22 18 21 mpbi xOnAR1x