Metamath Proof Explorer


Theorem ufdidom

Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis ufdidom.2 φ R UFD
Assertion ufdidom φ R IDomn

Proof

Step Hyp Ref Expression
1 ufdidom.2 φ R UFD
2 eqid PrmIdeal R = PrmIdeal R
3 eqid RPrime R = RPrime R
4 eqid 0 R = 0 R
5 2 3 4 isufd R UFD R IDomn i PrmIdeal R 0 R i RPrime R
6 5 simplbi R UFD R IDomn
7 1 6 syl φ R IDomn