Metamath Proof Explorer


Theorem uhgr3cyclexlem

Description: Lemma for uhgr3cyclex . (Contributed by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v V=VtxG
uhgr3cyclex.e E=EdgG
uhgr3cyclex.i I=iEdgG
Assertion uhgr3cyclexlem AVBVABJdomIBC=IJKdomICA=IKJK

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v V=VtxG
2 uhgr3cyclex.e E=EdgG
3 uhgr3cyclex.i I=iEdgG
4 fveq2 J=KIJ=IK
5 4 eqeq2d J=KBC=IJBC=IK
6 eqeq2 IK=CABC=IKBC=CA
7 6 eqcoms CA=IKBC=IKBC=CA
8 prcom CA=AC
9 8 eqeq1i CA=BCAC=BC
10 simpl AVBVAV
11 simpr AVBVBV
12 10 11 preq1b AVBVAC=BCA=B
13 12 biimpcd AC=BCAVBVA=B
14 9 13 sylbi CA=BCAVBVA=B
15 14 eqcoms BC=CAAVBVA=B
16 7 15 syl6bi CA=IKBC=IKAVBVA=B
17 16 adantl KdomICA=IKBC=IKAVBVA=B
18 17 com12 BC=IKKdomICA=IKAVBVA=B
19 5 18 syl6bi J=KBC=IJKdomICA=IKAVBVA=B
20 19 adantld J=KJdomIBC=IJKdomICA=IKAVBVA=B
21 20 com14 AVBVJdomIBC=IJKdomICA=IKJ=KA=B
22 21 imp32 AVBVJdomIBC=IJKdomICA=IKJ=KA=B
23 22 necon3d AVBVJdomIBC=IJKdomICA=IKABJK
24 23 impancom AVBVABJdomIBC=IJKdomICA=IKJK
25 24 imp AVBVABJdomIBC=IJKdomICA=IKJK